skip to main content


Search for: All records

Creators/Authors contains: "Shao, Qing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An unconventional “heteromorphic” superlattice (HSL) is realized, comprised of repeated layers of different materials with differing morphologies: semiconducting pc-In2O3 layers interleaved with insulating a-MoO3 layers. Originally proposed by Tsu in 1989, yet never fully realized, the high quality of the HSL heterostructure demonstrated here validates the intuition of Tsu, whereby the flexibility of the bond angle in the amorphous phase and the passivation effect of the oxide at interfacial bonds serve to create smooth, high-mobility interfaces. The alternating amorphous layers prevent strain accumulation in the polycrystalline layers while suppressing defect propagation across the HSL. For the HSL with 7:7 nm layer thickness, the observed electron mobility of 71 cm2/Vs, matches that of the highest quality In2O3 thin films. The atomic structure and electronic properties of crystalline In2O3 / amorphous MoO3 interfaces are verified using ab-initio molecular dynamics simulations and hybrid functional calculations. This work generalizes the superlattice concept to an entirely new paradigm of morphological combinations. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Peptide co-assembly is attractive for creating biomaterials with new forms and functions. Emergence of these properties depends on the peptide content of the final assembled structure, which is difficult to predict in multicomponent systems. Here using experiments and simulations we show that charge governs content by affecting propensity for self- and co-association in binary CATCH(+/−) peptide systems. Equimolar mixtures of CATCH(2+/2−), CATCH(4+/4−), and CATCH(6+/6−) formed two-component β-sheets. Solid-state NMR suggested the cationic peptide predominated in the final assemblies. The cationic-to-anionic peptide ratio decreased with increasing charge. CATCH(2+) formed β-sheets when alone, whereas the other peptides remained unassembled. Fibrillization rate increased with peptide charge. The zwitterionic CATCH parent peptide, “Q11”, assembled slowly and only at decreased simulation temperature. These results demonstrate that increasing charge draws complementary peptides together faster, favoring co-assembly, while like-charged molecules repel. We foresee these insights enabling development of co-assembled peptide biomaterials with defined content and predictable properties.

     
    more » « less
  4. Abstract

    Hydrophobic deep eutectic solvents (DESs) emerge as candidates to extract organic substrates from aqueous solutions. The DES‐aqueous liquid–liquid interface plays a vital role in the extraction ability of DESs because the nonbulk structure of interfacial molecules could cause thermodynamic and kinetic barriers. One question is how the DES compositions affect the structural features of the interface. We investigate the density profile, dipole moment, and hydrogen bonds of eight hydrophobic DES‐aqueous interfaces using molecular dynamics simulations. The eight DESs are composed of four organic compounds: decanoic acid, menthol, thymol, and lidocaine. The results show the variations of dipole moment and hydrogen bond structure and dynamics at the interfaces. These variations could influence the extraction ability of DES through adjusting the partition and kinetics of organic substrates in the DES‐aqueous biphasic systems. We also analyze the relationship between the variation of these interfacial features and the size and hydrophobicity of DES components.

     
    more » « less
  5. Peptide self-assembly, wherein molecule A associates with other A molecules to form fibrillar β-sheet structures, is common in nature and widely used to fabricate synthetic biomaterials. Selective coassembly of peptide pairs A and B with complementary partial charges is gaining interest due to its potential for expanding the form and function of biomaterials that can be realized. It has been hypothesized that charge-complementary peptides organize into alternating ABAB-type arrangements within assembled β-sheets, but no direct molecular-level evidence exists to support this interpretation. We report a computational and experimental approach to characterize molecular-level organization of the established peptide pair, CATCH. Discontinuous molecular dynamics simulations predict that CATCH(+) and CATCH(−) peptides coassemble but do not self-assemble. Two-layer β-sheet amyloid structures predominate, but off-pathway β-barrel oligomers are also predicted. At low concentration, transmission electron microscopy and dynamic light scattering identified nonfibrillar ∼20-nm oligomers, while at high concentrations elongated fibers predominated. Thioflavin T fluorimetry estimates rapid and near-stoichiometric coassembly of CATCH(+) and CATCH(−) at concentrations ≥100 μM. Natural abundance13C NMR and isotope-edited Fourier transform infrared spectroscopy indicate that CATCH(+) and CATCH(−) coassemble into two-component nanofibers instead of self-sorting. However,13C–13C dipolar recoupling solid-state NMR measurements also identify nonnegligible AA and BB interactions among a majority of AB pairs. Collectively, these results demonstrate that strictly alternating arrangements of β-strands predominate in coassembled CATCH structures, but deviations from perfect alternation occur. Off-pathway β-barrel oligomers are also suggested to occur in coassembled β-strand peptide systems.

     
    more » « less
  6. Abstract

    Hydrophobic deep eutectic solvents (DESs) have emerged as excellent extractants. Their performance depends on the heterogeneous hydrogen bond environment formed by multiple hydrogen bond donors and acceptors. Understanding this heterogeneous hydrogen bond environment can help develop principles for designing high‐performance DESs for extraction and other separation applications. We investigate the structure and dynamics of hydrogen bonds in eight hydrophobic DESs formed by decanoic acid, menthol, thymol, and lidocaine using molecular dynamics simulations. The results show the diversity of hydrogen bonds in the eight DESs and their impact on diffusivity and molecular association. Each DES possesses four to six types of hydrogen bonds and one or two of them overwhelm the others in quantity and lifetime. The dominating hydrogen bonds determine whether the DESs are governed by intra‐ or inter‐component associations. The component diffusivity presents an inverse relationship with the hydrogen bond strength.

     
    more » « less