Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 14, 2026
- 
            An unconventional “heteromorphic” superlattice (HSL) is realized, comprised of repeated layers of different materials with differing morphologies: semiconducting pc-In2O3 layers interleaved with insulating a-MoO3 layers. Originally proposed by Tsu in 1989, yet never fully realized, the high quality of the HSL heterostructure demonstrated here validates the intuition of Tsu, whereby the flexibility of the bond angle in the amorphous phase and the passivation effect of the oxide at interfacial bonds serve to create smooth, high-mobility interfaces. The alternating amorphous layers prevent strain accumulation in the polycrystalline layers while suppressing defect propagation across the HSL. For the HSL with 7:7 nm layer thickness, the observed electron mobility of 71 cm2/Vs, matches that of the highest quality In2O3 thin films. The atomic structure and electronic properties of crystalline In2O3 / amorphous MoO3 interfaces are verified using ab-initio molecular dynamics simulations and hybrid functional calculations. This work generalizes the superlattice concept to an entirely new paradigm of morphological combinations.more » « less
- 
            Abstract Peptide co-assembly is attractive for creating biomaterials with new forms and functions. Emergence of these properties depends on the peptide content of the final assembled structure, which is difficult to predict in multicomponent systems. Here using experiments and simulations we show that charge governs content by affecting propensity for self- and co-association in binary CATCH(+/−) peptide systems. Equimolar mixtures of CATCH(2+/2−), CATCH(4+/4−), and CATCH(6+/6−) formed two-component β-sheets. Solid-state NMR suggested the cationic peptide predominated in the final assemblies. The cationic-to-anionic peptide ratio decreased with increasing charge. CATCH(2+) formed β-sheets when alone, whereas the other peptides remained unassembled. Fibrillization rate increased with peptide charge. The zwitterionic CATCH parent peptide, “Q11”, assembled slowly and only at decreased simulation temperature. These results demonstrate that increasing charge draws complementary peptides together faster, favoring co-assembly, while like-charged molecules repel. We foresee these insights enabling development of co-assembled peptide biomaterials with defined content and predictable properties.more » « less
- 
            Peptide self-assembly, wherein molecule A associates with other A molecules to form fibrillar β-sheet structures, is common in nature and widely used to fabricate synthetic biomaterials. Selective coassembly of peptide pairs A and B with complementary partial charges is gaining interest due to its potential for expanding the form and function of biomaterials that can be realized. It has been hypothesized that charge-complementary peptides organize into alternating ABAB-type arrangements within assembled β-sheets, but no direct molecular-level evidence exists to support this interpretation. We report a computational and experimental approach to characterize molecular-level organization of the established peptide pair, CATCH. Discontinuous molecular dynamics simulations predict that CATCH(+) and CATCH(−) peptides coassemble but do not self-assemble. Two-layer β-sheet amyloid structures predominate, but off-pathway β-barrel oligomers are also predicted. At low concentration, transmission electron microscopy and dynamic light scattering identified nonfibrillar ∼20-nm oligomers, while at high concentrations elongated fibers predominated. Thioflavin T fluorimetry estimates rapid and near-stoichiometric coassembly of CATCH(+) and CATCH(−) at concentrations ≥100 μM. Natural abundance13C NMR and isotope-edited Fourier transform infrared spectroscopy indicate that CATCH(+) and CATCH(−) coassemble into two-component nanofibers instead of self-sorting. However,13C–13C dipolar recoupling solid-state NMR measurements also identify nonnegligible AA and BB interactions among a majority of AB pairs. Collectively, these results demonstrate that strictly alternating arrangements of β-strands predominate in coassembled CATCH structures, but deviations from perfect alternation occur. Off-pathway β-barrel oligomers are also suggested to occur in coassembled β-strand peptide systems.more » « less
- 
            Abstract De novodesign provides an attractive approach, which allows one to test and refine the principles guiding metalloproteins in defining the geometry and reactivity of their metal ion cofactors. Although impressive progress has been made in designing proteins that bind transition metal ions including iron–sulfur clusters, the design of tetranuclear clusters with oxygen‐rich environments remains in its infancy. In previous work, we described the design of homotetrameric four‐helix bundles that bind tetra‐Zn2+clusters. The crystal structures of the helical proteins were in good agreement with the overall design, and the metal‐binding and conformational properties of the helical bundles in solution were consistent with the crystal structures. However, the correspondingapo‐proteins were not fully folded in solution. In this work, we design three peptides, based on the crystal structure of the original bundles. One of the peptides forms tetramers in aqueous solution in the absence of metal ions as assessed by CD and NMR. It also binds Zn2+in the intended stoichiometry. These studies strongly suggest that the desired structure has been achieved in theapostate, providing evidence that the peptide is able to actively impart the designed geometry to the metal cluster.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
